June 2018

INTRODUCTION TO ALGEBRAIC GEOMETRY

100 Points

Notes.

(a) Justify all your steps. Use only those results proved in class.

(b) By default, k denotes an algebraically closed field.

(c) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(d) \mathbb{A}_k^n = the affine *n*-space over k, \mathbb{P}_k^n = the projective *n*-space over k.

(e) $\mathcal{V}(-)$ = the common zero locus in suitable affine/projective space of a given collection of polynomials,

while $\mathcal{I}(-)$ = the ideal of functions vanishing on a given subset of affine/projective space.

(f) $\mathcal{O}(-)$ = the ring of regular functions on a given quasi-projective algebraic set.

- 1. [12 points] Define the Krull dimension of a topological space. Explain why \mathbb{A}_k^n has dimension n.
- 2. [20 points] Let $K \to L$ be an extension of fields.
 - (i) Define what it means for elements $a_1, \ldots, a_r \in L$ to be algebraically independent over K.
 - (ii) Define the transcendental basis and transcendence degree of L over K.
- (iii) Give an example of a field extension of transcendence degree 1.

3. [16 points] Define the local ring of a point p on a quasi-projective algebraic set Z. Define the Zariski tangent space at that point. Prove that the Zariski tangent space of any point on \mathbb{A}_k^n has vector space dimension n.

4. [20 points] Assume char(k) $\neq 2$. Prove that any irreducible conic in \mathbb{P}^2_k is isomorphic to the curve $\mathcal{V}(X^2 + Y^2 + Z^2)$. Calculate the points at infinity that lie on the projective closure of the following affine conics:

(a) $\mathcal{V}(x^2 + y^2 - 1)$, (b) $\mathcal{V}(y - x^2)$, (c) $\mathcal{V}(x^2 - y^2 - 1)$.

5. [20 points] For every $a, b \in k$, find the intersection multiplicity at the intersection points of the line aY = bX with the curve $Y^2 = X^2(X + Z)$ in \mathbb{P}^2 .

6. [12 points] Define what it means for a ring to be a discrete valuation ring. Give an example of such a ring.